
Promela Synchronisation Model Checking with SPIN Channels

COMP

3

9

1 5

3
Algorithmic Verification

<latexit sha1_base64="P4jUUJHo6g1yopyZBD74hiv3LdI=">AAAIZHicjVRbb9NIFD6kXEKWW6l4QEhooCBalIa4JYJqVcTSF14QRaIFqanQ2D5xRpnYZjxpG6L8Cn7d/oH9EfvEmWPnRgy7juw5/ubMd75zif1Uq8w2m39fqKxcvHT5SvVq7Y9r12/cvLV6+yhLBibAwyDRifnsywy1ivHQKqvxc2pQ9n2Nn/zevtv/dIomU0n80Q5TPOnLKFYdFUhL0JfVyve2j5GKR1b1vqUqsAOD41o7TkI8zqy0WO8orfd8PcAH2826ULGySuoTsfHV2xSjtsVz63fyNeuM9t+/OxiPx38uMxgMmUD6ySkKo6KuFUln76tHVHqnhGqnnOdUJRotU/mok7OfqXZLqHbLqSKDGJeJ0ruOqSw/r5xpiJqkMNWMhOW0Skha5STBUMZzeTmKVl0GAaZWxRGX6fzXdQqNPMubgmGEXIgydGeGuqoXqDeH7paiM4bWHNqa8Z5vFikJacWGV9/yGtNWkMq/dJQYZbt9FYgjNNMJZO0Yhwvz9+XWerPR5EssG15hrENxHSSrlTa0IYQEAhhAHxBisGRrkJDR7xg8aEJK2AmMCDNkKd5HGEONzg7IC8lDEtqjZ0RvxwUa07vjzPh0QFE03YZOCnhc+IRkdxjNVxdfzPn+KsaIuZ3GIa1+wdkn1EKX0P86N/H8v+dcTpYUvuRcFOlMGXFZBgsZdWjV9G5Jv3sOyRPJCumUISsgTBOaIy6GoTWvq8u8y3WW7Idk/S4Xd6oH3zj+xGeCaVp9ZjIUzeU9YE15rhLqdCal96yI7mrv8op4x50yhJ3Rvuu00zBhzqOMyGsLXrH3K9gj1OmVFNdV8gnjj+l28Xo8BYJ3cIFdMCKpFm7f5767majRvfyLaT+cVjPjPFz9keJ70IAW2f1p5IwrH5Bnh+5FBX3OVdHq5n6Zz2lxWZ7R0/VYsJ3MacgonoB97lfM/RAcyXkgc7jpzKvfWMoI4ZS7O2SdlnuC8Iw8M54ZzTmNWK/intf5H6JoR9NOxJ0dwgPKuUkdmuXsVM9nmnKlU45mp3WY/OeQJ6oLQtyd6SB7vtaLyvO6WZ7dfM4Rzum5B4/o7dFvlEw8c0SyJUlZyioM+yZFrfMTuSJTeM5mpgbuW+f9/GVbNo62G97zxvMP2+uv3xRfvSrcg4ewQfPyAl7DWziAQwgq/66Ilc2Vp1f+qV6rrlXv5K6VC8WZNVi4qvd/AB3w9Tw=</latexit>

SPIN and Promela

Dr. Liam O’Connor
CSE, UNSW (for now)

Term 1 2020

1



Promela Synchronisation Model Checking with SPIN Channels

SPIN

http://www.spinroot.com

Programs are modelled in the Promela language.

2

http://www.spinroot.com


Promela Synchronisation Model Checking with SPIN Channels

Promela in brief
A kind of weird hybrid of C and Guarded Command Language.

Models consist of multiple processes which may be
non-deterministic, and may include guards.

Supports structured control using special if and do blocks, as
well as goto.

Variables are either global or process-local. No other scopes
exist.

Variables can be of several types: bit, byte, int and so on,
as well as channels.

Enumerations can be approximated with mtype keyword.

Correctness claims can be expressed in many different ways.

Warning

Variables of non-fixed size like int are of machine determined size,
like C.

3



Promela Synchronisation Model Checking with SPIN Channels

Promela in brief
A kind of weird hybrid of C and Guarded Command Language.

Models consist of multiple processes which may be
non-deterministic, and may include guards.

Supports structured control using special if and do blocks, as
well as goto.

Variables are either global or process-local. No other scopes
exist.

Variables can be of several types: bit, byte, int and so on,
as well as channels.

Enumerations can be approximated with mtype keyword.

Correctness claims can be expressed in many different ways.

Warning

Variables of non-fixed size like int are of machine determined size,
like C.

4



Promela Synchronisation Model Checking with SPIN Channels

Promela in brief
A kind of weird hybrid of C and Guarded Command Language.

Models consist of multiple processes which may be
non-deterministic, and may include guards.

Supports structured control using special if and do blocks, as
well as goto.

Variables are either global or process-local. No other scopes
exist.

Variables can be of several types: bit, byte, int and so on,
as well as channels.

Enumerations can be approximated with mtype keyword.

Correctness claims can be expressed in many different ways.

Warning

Variables of non-fixed size like int are of machine determined size,
like C.

5



Promela Synchronisation Model Checking with SPIN Channels

Promela in brief
A kind of weird hybrid of C and Guarded Command Language.

Models consist of multiple processes which may be
non-deterministic, and may include guards.

Supports structured control using special if and do blocks, as
well as goto.

Variables are either global or process-local. No other scopes
exist.

Variables can be of several types: bit, byte, int and so on,
as well as channels.

Enumerations can be approximated with mtype keyword.

Correctness claims can be expressed in many different ways.

Warning

Variables of non-fixed size like int are of machine determined size,
like C.

6



Promela Synchronisation Model Checking with SPIN Channels

Promela in brief
A kind of weird hybrid of C and Guarded Command Language.

Models consist of multiple processes which may be
non-deterministic, and may include guards.

Supports structured control using special if and do blocks, as
well as goto.

Variables are either global or process-local. No other scopes
exist.

Variables can be of several types: bit, byte, int and so on,
as well as channels.

Enumerations can be approximated with mtype keyword.

Correctness claims can be expressed in many different ways.

Warning

Variables of non-fixed size like int are of machine determined size,
like C.

7



Promela Synchronisation Model Checking with SPIN Channels

Promela in brief
A kind of weird hybrid of C and Guarded Command Language.

Models consist of multiple processes which may be
non-deterministic, and may include guards.

Supports structured control using special if and do blocks, as
well as goto.

Variables are either global or process-local. No other scopes
exist.

Variables can be of several types: bit, byte, int and so on,
as well as channels.

Enumerations can be approximated with mtype keyword.

Correctness claims can be expressed in many different ways.

Warning

Variables of non-fixed size like int are of machine determined size,
like C.

8



Promela Synchronisation Model Checking with SPIN Channels

Promela in brief
A kind of weird hybrid of C and Guarded Command Language.

Models consist of multiple processes which may be
non-deterministic, and may include guards.

Supports structured control using special if and do blocks, as
well as goto.

Variables are either global or process-local. No other scopes
exist.

Variables can be of several types: bit, byte, int and so on,
as well as channels.

Enumerations can be approximated with mtype keyword.

Correctness claims can be expressed in many different ways.

Warning

Variables of non-fixed size like int are of machine determined size,
like C.

9



Promela Synchronisation Model Checking with SPIN Channels

Promela in brief
A kind of weird hybrid of C and Guarded Command Language.

Models consist of multiple processes which may be
non-deterministic, and may include guards.

Supports structured control using special if and do blocks, as
well as goto.

Variables are either global or process-local. No other scopes
exist.

Variables can be of several types: bit, byte, int and so on,
as well as channels.

Enumerations can be approximated with mtype keyword.

Correctness claims can be expressed in many different ways.

Warning

Variables of non-fixed size like int are of machine determined size,
like C.

10



Promela Synchronisation Model Checking with SPIN Channels

Example 1: Hello World

Liam will demonstrate the basics of proctype and run using some
simple examples.

Take-away

You can use SPIN to randomly simulate Promela programs as well
as model check them.

11



Promela Synchronisation Model Checking with SPIN Channels

Example 1: Hello World

Liam will demonstrate the basics of proctype and run using some
simple examples.

Take-away

You can use SPIN to randomly simulate Promela programs as well
as model check them.

12



Promela Synchronisation Model Checking with SPIN Channels

Sequential vs Concurrent
We could consider a sequential program as a sequence (or total
order) of actions:

• • • • • • · · ·

The ordering here is “happens before”. For example, processor
instructions:

LD R0,X LDI R1,5 ADD R0,R1 ST X,R0

A concurrent program is not a total order but a partial order.

• • • • • • · · ·

◦ ◦ ◦ ◦ ◦ ◦ · · ·

This means that there are now multiple possible interleavings of
these actions — our program is non-deterministic where the
interleaving is selected by the scheduler.

13



Promela Synchronisation Model Checking with SPIN Channels

Sequential vs Concurrent
We could consider a sequential program as a sequence (or total
order) of actions:

• • • • • • · · ·

The ordering here is “happens before”. For example, processor
instructions:

LD R0,X LDI R1,5 ADD R0,R1 ST X,R0

A concurrent program is not a total order but a partial order.

• • • • • • · · ·

◦ ◦ ◦ ◦ ◦ ◦ · · ·

This means that there are now multiple possible interleavings of
these actions — our program is non-deterministic where the
interleaving is selected by the scheduler.

14



Promela Synchronisation Model Checking with SPIN Channels

Sequential vs Concurrent
We could consider a sequential program as a sequence (or total
order) of actions:

• • • • • • · · ·

The ordering here is “happens before”. For example, processor
instructions:

LD R0,X LDI R1,5 ADD R0,R1 ST X,R0

A concurrent program is not a total order but a partial order.

• • • • • • · · ·

◦ ◦ ◦ ◦ ◦ ◦ · · ·

This means that there are now multiple possible interleavings of
these actions — our program is non-deterministic where the
interleaving is selected by the scheduler.

15



Promela Synchronisation Model Checking with SPIN Channels

Example 2: Counters

Liam will demonstrate a program that exhibits non-deterministic
behaviour due to scheduling.

Explicit non-determinism

You can also add explicit non-determinism using if and do blocks:

if

:: (n % 2 != 0) -> n = 1;

:: (n >= 0) -> n = n - 2;

:: (n % 3 == 0) -> n = 3;

:: else -> skip;

fi

What would happen without the else line?

16



Promela Synchronisation Model Checking with SPIN Channels

Example 2: Counters

Liam will demonstrate a program that exhibits non-deterministic
behaviour due to scheduling.

Explicit non-determinism

You can also add explicit non-determinism using if and do blocks:

if

:: (n % 2 != 0) -> n = 1;

:: (n >= 0) -> n = n - 2;

:: (n % 3 == 0) -> n = 3;

:: else -> skip;

fi

What would happen without the else line?

17



Promela Synchronisation Model Checking with SPIN Channels

Example 2: Counters

Liam will demonstrate a program that exhibits non-deterministic
behaviour due to scheduling.

Explicit non-determinism

You can also add explicit non-determinism using if and do blocks:

if

:: (n % 2 != 0) -> n = 1;

:: (n >= 0) -> n = n - 2;

:: (n % 3 == 0) -> n = 3;

:: else -> skip;

fi

What would happen without the else line?

18



Promela Synchronisation Model Checking with SPIN Channels

Guards

The arrows in the previous slide are just sugar for semicolons:

if

:: (n % 2 != 0); n = 1;

:: (n >= 0); n = n - 2;

:: (n % 3 == 0); n = 3;

fi

A boolean expression by itself forms a guard. Execution can only
progress past a guard if the boolean expression evaluates to true
(non-zero).
Recall a state with no outgoing transitions is called deadlock.
SPIN can detect deadlock in Promela programs.

19



Promela Synchronisation Model Checking with SPIN Channels

mtype and Looping

mtype = {RED, YELLOW, GREEN};

active proctype TrafficLight() {

mtype state = GREEN;

do

:: (state == GREEN) -> state = YELLOW;

:: (state == YELLOW) -> state = RED;

:: (state == RED) -> state = GREEN;

od

}

Non-determinism can be avoided by making guards mutually
exclusive. Exit loops with break.

20



Promela Synchronisation Model Checking with SPIN Channels

State Space Explosion

a1

a2

b1

b2

a1

a2

b1

b2

The number of concurrent interleavings gets very large the more
processes we add.

21



Promela Synchronisation Model Checking with SPIN Channels

Synchronisation

In order to reduce the number of possible interleavings, we must
allow processes to synchronise their behaviour, ensuring more
orderings (and thus fewer interleavings).

• • • • • • · · ·

◦ ◦ ◦ ◦ ◦ ◦ · · ·

The red arrows are synchronisations.
The most common synchronisation problem is the critical section
problem, which we will discuss later. Promela includes some
synchronisation primitives, however.

22



Promela Synchronisation Model Checking with SPIN Channels

atomic and d step

Grouping statements in Promela with atomic prevents them from
being interrupted.

a1

a2

b1

b2

a1

a2

b1

atomic

If a statement in an atomic block is blocked, atomicity is
temporarily suspended and another process may run.

23



Promela Synchronisation Model Checking with SPIN Channels

atomic and d step

Grouping statements with d step is more efficient than atomic,
as it groups them all into one transition.

a1

a2

b1

b2

a1; a2 b1

d step

Non-determinism (if,do) is not allowed in d step. If a statement
in the block blocks, a runtime error is raised.

24



Promela Synchronisation Model Checking with SPIN Channels

Critical Section Problems

In the Real WorldTM, we don’t have the luxury of atomic and
d step blocks. To solve this for real systems, we need solutions to
the critical section problem.

A sketch of the problem can be outlined as follows:

forever do forever do
non-critical section non-critical section
pre-protocol pre-protocol
critical section critical section
post-protocol post-protocol

The non-critical section models the possibility that a process may
do something else. It can take any amount of time (even infinite).
Our task is to find a pre- and post-protocol such that certain
atomicity properties are satisfied.

25



Promela Synchronisation Model Checking with SPIN Channels

Critical Section Problems

In the Real WorldTM, we don’t have the luxury of atomic and
d step blocks. To solve this for real systems, we need solutions to
the critical section problem.
A sketch of the problem can be outlined as follows:

forever do forever do
non-critical section non-critical section
pre-protocol pre-protocol
critical section critical section
post-protocol post-protocol

The non-critical section models the possibility that a process may
do something else. It can take any amount of time (even infinite).
Our task is to find a pre- and post-protocol such that certain
atomicity properties are satisfied.

26



Promela Synchronisation Model Checking with SPIN Channels

Critical Section Problems

In the Real WorldTM, we don’t have the luxury of atomic and
d step blocks. To solve this for real systems, we need solutions to
the critical section problem.
A sketch of the problem can be outlined as follows:

forever do forever do
non-critical section non-critical section
pre-protocol pre-protocol
critical section critical section
post-protocol post-protocol

The non-critical section models the possibility that a process may
do something else. It can take any amount of time (even infinite).

Our task is to find a pre- and post-protocol such that certain
atomicity properties are satisfied.

27



Promela Synchronisation Model Checking with SPIN Channels

Critical Section Problems

In the Real WorldTM, we don’t have the luxury of atomic and
d step blocks. To solve this for real systems, we need solutions to
the critical section problem.
A sketch of the problem can be outlined as follows:

forever do forever do
non-critical section non-critical section
pre-protocol pre-protocol
critical section critical section
post-protocol post-protocol

The non-critical section models the possibility that a process may
do something else. It can take any amount of time (even infinite).
Our task is to find a pre- and post-protocol such that certain
atomicity properties are satisfied.

28



Promela Synchronisation Model Checking with SPIN Channels

Desiderata

We want to ensure two main properties:

Mutual Exclusion No two processes are in their critical
section at the same time.

Eventual Entry (or starvation-freedom) Once it enters its
pre-protocol, a process will eventually be able to execute its
critical section.

Question

Which is safety and which is liveness?

Mutex is safety, Eventual Entry is liveness.

Let’s use SPIN verify our solutions!

29



Promela Synchronisation Model Checking with SPIN Channels

Desiderata

We want to ensure two main properties:

Mutual Exclusion No two processes are in their critical
section at the same time.

Eventual Entry (or starvation-freedom) Once it enters its
pre-protocol, a process will eventually be able to execute its
critical section.

Question

Which is safety and which is liveness?
Mutex is safety, Eventual Entry is liveness.

Let’s use SPIN verify our solutions!

30



Promela Synchronisation Model Checking with SPIN Channels

Assertions

We can make boolean assertions with assert, just like in C, but
the SPIN verifier can check our assertions for us.
Combined with a monitor process, it is a useful way to check safety
properties.
Liam will use this method to verify a simple mutual exclusion
property for a critical section solution.

31



Promela Synchronisation Model Checking with SPIN Channels

Labels
You can label lines of code with a label name followed by a colon,
as in C. Labels can also be used in boolean expressions, where
P@label evaluates to true iff process P is at the label marked
label.
Liam: Demonstrate using labels on the critical section solution.

There are also special labels used to denote special states for
model checking:

End states occur automatically at the end of processes or on
states labelled with labels beginning with end.
Terminating in these states is not considered as
deadlock.

Progress states must be visited infinitely often (liveness). Labels
start with progress.

Acceptance states must not be visited infinitely often. Labels
start with accept.

In general these states are for use in never claims.

32



Promela Synchronisation Model Checking with SPIN Channels

Labels
You can label lines of code with a label name followed by a colon,
as in C. Labels can also be used in boolean expressions, where
P@label evaluates to true iff process P is at the label marked
label.
Liam: Demonstrate using labels on the critical section solution.

There are also special labels used to denote special states for
model checking:

End states occur automatically at the end of processes or on
states labelled with labels beginning with end.
Terminating in these states is not considered as
deadlock.

Progress states must be visited infinitely often (liveness). Labels
start with progress.

Acceptance states must not be visited infinitely often. Labels
start with accept.

In general these states are for use in never claims.

33



Promela Synchronisation Model Checking with SPIN Channels

Labels
You can label lines of code with a label name followed by a colon,
as in C. Labels can also be used in boolean expressions, where
P@label evaluates to true iff process P is at the label marked
label.
Liam: Demonstrate using labels on the critical section solution.

There are also special labels used to denote special states for
model checking:

End states occur automatically at the end of processes or on
states labelled with labels beginning with end.
Terminating in these states is not considered as
deadlock.

Progress states must be visited infinitely often (liveness). Labels
start with progress.

Acceptance states must not be visited infinitely often. Labels
start with accept.

In general these states are for use in never claims.

34



Promela Synchronisation Model Checking with SPIN Channels

Labels
You can label lines of code with a label name followed by a colon,
as in C. Labels can also be used in boolean expressions, where
P@label evaluates to true iff process P is at the label marked
label.
Liam: Demonstrate using labels on the critical section solution.

There are also special labels used to denote special states for
model checking:

End states occur automatically at the end of processes or on
states labelled with labels beginning with end.
Terminating in these states is not considered as
deadlock.

Progress states must be visited infinitely often (liveness). Labels
start with progress.

Acceptance states must not be visited infinitely often. Labels
start with accept.

In general these states are for use in never claims.

35



Promela Synchronisation Model Checking with SPIN Channels

Labels
You can label lines of code with a label name followed by a colon,
as in C. Labels can also be used in boolean expressions, where
P@label evaluates to true iff process P is at the label marked
label.
Liam: Demonstrate using labels on the critical section solution.

There are also special labels used to denote special states for
model checking:

End states occur automatically at the end of processes or on
states labelled with labels beginning with end.
Terminating in these states is not considered as
deadlock.

Progress states must be visited infinitely often (liveness). Labels
start with progress.

Acceptance states must not be visited infinitely often. Labels
start with accept.

In general these states are for use in never claims.

36



Promela Synchronisation Model Checking with SPIN Channels

Labels
You can label lines of code with a label name followed by a colon,
as in C. Labels can also be used in boolean expressions, where
P@label evaluates to true iff process P is at the label marked
label.
Liam: Demonstrate using labels on the critical section solution.

There are also special labels used to denote special states for
model checking:

End states occur automatically at the end of processes or on
states labelled with labels beginning with end.
Terminating in these states is not considered as
deadlock.

Progress states must be visited infinitely often (liveness). Labels
start with progress.

Acceptance states must not be visited infinitely often. Labels
start with accept.

In general these states are for use in never claims.
37



Promela Synchronisation Model Checking with SPIN Channels

Never Claims
A process defined in a never block runs in lock-step with all other
processes.

Never Claim execution

Each transition of a regular process must be matched with a
transition of the never process.

This can be used to restrict the search space to ones where certain
properties hold, or to check invariants.
Liam will demonstrate checking Mutual Exclusion with a never claim.

Question

What would the following never claim do?
never {

true;

}

38



Promela Synchronisation Model Checking with SPIN Channels

Never Claims
A process defined in a never block runs in lock-step with all other
processes.

Never Claim execution

Each transition of a regular process must be matched with a
transition of the never process.

This can be used to restrict the search space to ones where certain
properties hold, or to check invariants.
Liam will demonstrate checking Mutual Exclusion with a never claim.

Question

What would the following never claim do?
never {

true;

}

39



Promela Synchronisation Model Checking with SPIN Channels

Never Claims
A process defined in a never block runs in lock-step with all other
processes.

Never Claim execution

Each transition of a regular process must be matched with a
transition of the never process.

This can be used to restrict the search space to ones where certain
properties hold, or to check invariants.
Liam will demonstrate checking Mutual Exclusion with a never claim.

Question

What would the following never claim do?
never {

true;

}

40



Promela Synchronisation Model Checking with SPIN Channels

LTL formulae

Spin can translate LTL formulae to Never claims automatically.
Liam will demonstrate verifying safety (mutex) and liveness
(eventual entry) using LTL claims.

41



Promela Synchronisation Model Checking with SPIN Channels

Eventual Entry!

Our naive solution doesn’t satisfy eventual entry, even with weak
fairness.

Liam will try a few more examples, ultimately leading up to
Peterson’s algorithm.

42



Promela Synchronisation Model Checking with SPIN Channels

Channels
A channel is a FIFO queue of messages (which can consist of
multiple pieces of data) that is shared between processes.

chan c = [10] of { mtype, byte, int }

Creates a channel of size 10 with messages consisting of an mtype,
a byte and an int.

c ? v1, v2, v3;

Removes a message from a channel, storing the data in the
variables v1,v2,v3. If the channel is empty, it blocks. You can
also put literal values in place of variables to pattern match.

c ! RED, 255, 32767;

Sends a message into the channel. If the channel is full, block.
43



Promela Synchronisation Model Checking with SPIN Channels

Synchronous communication

If channel size is zero, the channel is synchronous. This means
that each send must be paired with a matching receive, and they
both execute together.
Liam will demonstrate modelling a lock using:

synchronous message passing, and

an asynchronous channel with an atomicity token.

44



Promela Synchronisation Model Checking with SPIN Channels

Bibliography

M.Ben-Ari, Principles of Concurrent and Distributed
Programming

http://spinroot.com

45

http://spinroot.com

	Promela
	Synchronisation
	Model Checking with SPIN
	Channels
	

